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Supplementary Discussion 
 
1. Worst Case Performance 
We analyzed the aggregated predictions from different ElemNet models trained with and without 
transfer learning on different datasets. For this we looked at the top 10 elements present in the set 
of compounds having more than 98th percentile prediction error. Since the size of training dataset 
has a large impact on performance of a deep learning model, we studied the impact of presence of 
elements in the training dataset on the prediction errors. 
 
For OQMD-SC (model trained on OQMD from scratch), the 98th percentile error is 0.357 
eV/atom, the top 10 elements in the worst predicted set include Pu, O, Np, B, Te, Ru, Sr, Si, Bi 
and Cs. These elements (except O) are present in only 1,000 to 1,600 materials compounds in 
OQMD, which is typically less than other elements. Oxygen is present in around 3,200 materials 
in the dataset, out of which 96 materials are present in the 98th percentile, which is a low 
proportion.  
 
For models trained on the other three datasets where we apply transfer learning from OQMD-SC, 
we observe that the 98th percentile drops significantly after transfer learning. For EXP-SC – the 
model trained from scratch on the experimental dataset, the 98th percentile error are 0.68 eV/atom 
and 0.28 eV/atom with and without transfer learning respectively. The top 10 elements in the worst 
predicted set includes O, Ca, Cl, N, F, Te, Sr, B, Pm and I. Oxygen (O) appears in 14 materials in 
the worst predicted set which is pretty low compared to the total number of materials containing 
Oxygen in the whole dataset (884). Similarly, other elements appear in less than 10 materials in 
the worst set containing 44 samples. All these elements exhibit a large reduction in prediction error 
using EXP-TL due to the use of transfer learning from OQMD-SC; the halides are present in 
around 1,000 OQMD samples while other elements are heavily present in OQMD. Similarly, for 
models trained on JARVIS, the 98th percentile drops from 0.225 eV/atom to 0.154 eV/atom after 
using transfer learning from OQMD-SC; the top 10 elements present in the worst predicted 
systems being O, F, N, Mn, Cl, Cr, Te, Se, S and Yb. All these elements have significantly low 
presence in the worst case compared to overall dataset and they all benefit from transfer learning 
from OQMD-SC, especially the transition metals due to their high presence in OQMD. For the 
models trained on the Materials Project, the 98th percentile error dropped from 0.141 eV/atom to 
0.112 eV/atom after using transfer learning from OQMD-SC; the top 10 elements being O, F, N, 
S, Cl, C, Cs, Ba, I and B. All elements again benefit heavily from the use of transfer learning from 
OQMD-SC. Note that we do not have any transition metals in this case. 
 
From this analysis, we observe that O consistently appears at the top element in the worst predicted 
system for all datasets, which is most likely due to the fact that Oxygen is present in most of the 
materials present in these datasets. All elements benefit from the use of transfer learning from 
OQMD-SC, which is trained on OQMD dataset that contains almost all of these elements for a 
diverse set of compound systems. 
 
 
2. Comparison against Traditional Machine Learning Approaches 
 



In our previous work [1], we showed how ElemNet outperforms traditional machine learning 
techniques by automatically capturing the chemical interactions between elements using artificial 
intelligence. Here, we evaluate traditional machine learning techniques using the same ten-fold 
cross validation splits as used for ElemNet, as shown in Table 1. We used two types of inputs here- 
elemental compositions as in ElemNet [1] and 145 physical attributes computed using domain 
knowledge and intuition [2]. For the case of elemental compositions as inputs, we found that there 
is no clear winner among the traditional machine learning algorithms. For the case of physical 
attributes as the input, Random Forest outperforms other traditional machine learning algorithms 
for all datasets; this is in agreement with the state-of-the-art traditional machine learning based 
modeling from Ward et al. [2]. For all the datasets, we can observe clearly that the proposed 
technique of transfer learning from OQMD-SC performs best, outperforming all other approaches. 
 
Dataset Model Input Type MAE (eV/atom) 
OQMD KNeighbors Elemental Compositions 0.1558 ± 0.0000 
 Random Forest Physical Attributes 0.0731 ± 0.0000 
 OQMD-SC Elemental Compositions 0.0417 ± 0.0000 
JARVIS Bagging Elemental Compositions 0.1695 ± 0.0057 
 Random Forest Physical Attributes 0.0858 ± 0.0025 
 JAR-SC Elemental Compositions 0.0546 ± 0.0019 
 OQMD-SC Elemental Compositions 0.0821 ± 0.0000 
 JAR-TL Elemental Compositions 0.0311 ± 0.0012 
Materials Project Bagging Elemental Compositions 0.1401 ± 0.0033 
 Random Forest Physical Attributes 0.0716 ± 0.0016 
 MAT-SC Elemental Compositions 0.0326 ± 0.0009 
 OQMD-SC Elemental Compositions 0.1084 ± 0.0000 
 MAT-TL Elemental Compositions 0.0248 ± 0.0006 
Experimental KNeighbors Elemental Compositions 0.2377 ± 0.0232 
 Random Forest Physical Attributes 0.1227 ± 0.0092 
 EXP-SC Elemental Compositions 0.1299 ± 0.0136 
 OQMD-SC Elemental Compositions 0.1354 ± 0.0000 
 EXP-TL Elemental Compositions 0.0642 ± 0.0061 

 
Supplementary Table 1: Benchmarking our deep learning model – ElemNet, against 
conventional machine learning approaches for formation energy on different datasets. We trained 
several conventional ML models such as Linear Regression, SGD Regression, Elastic-Net, 
AdaBoost, Ridge, RBFSVM, Decision Tree, Kernel Ridge, KNeighbors Regression, Bagging and 
Random Forest; here, we show the results from the best conventional ML model in our comparison 
study, along with the type of input used, and the resulting mean absolute error (MAE) on the test 
set. All the models are trained and tested using the same ten-fold cross validation splits as for the 
ElemNet model. Note that OQMD-SC model is trained using one 9:1 random split. 
 
 
 
 



 
 
Supplementary Figures 
 

 
 

Supplementary Figure  1: Prediction error analysis using OQMD-SC model on the other three 
datasets. The OQMD-SC model is trained from scratch (with random weight initialization from a 
uniform distribution) using a 9:1 random split of training and test set from the OQMD. Although 
OQMD-SC model has low prediction error against the test set from OQMD, the prediction error 
is high if we compare against other datasets. This is because of the difference in the DFT-
computations used in JARIVS (a) and Materials Project (b), and  OQMD. Since DFT-computations 
from the OQMD has an error of around 0.1 eV/atom against experimental observations, this error 
is inherent in the OQMD-SC model leading to higher prediction errors (c-d). 

 
 



 
Supplementary Figure 2: Analysis of the activations from the first hidden layer of the ElemNet 
architecture for the insulator vs metallic class (1 and 0) from JARVIS dataset. The four columns 
represent the models trained using four different datasets- (a, e and i) JARVIS (JAR), (b, f and j) 
Materials Project (MP), (c, g and k) OQMD and (d, h and l) the experimental observations (EXP); 
the first (a-d) and second (e-h) rows represent the models trained from scratch (SC) and using 
transfer learning (TL), while the third row (i-l) represents the ROC curves from the Logistic 
Regression model trained using all activations from the same hidden layer (the corresponding AUC 
values are shown in brackets) on the respective datasets. The scatter plots demonstrate the first two 
principal components of the activations using principal component analysis (PCA) technique. 

 



 
 
Supplementary Figure 3: Training curve for an ElemNet model trained on experimental dataset 
containing 1,963 observations from one split of the ten-fold cross validation. We present the 
training error curve for ElemNet [1] model trained on the experimental dataset from scratch- EXP-
SC and using transfer learning from OQMD-SC model- EXP-TL. The training curves show the 
training and validation error during training the models. When training from scratch in case of 
EXP-SC (a), the weights are initialized randomly from a uniform distribution; for transfer learning 
in case of EXP-TL (b), the model weights are initialized from the OQMD-SC model and then fine-
tuned using the corresponding dataset. The OQMD-SC model is trained from scratch using a 9:1 
random split of training and test set from OQMD. The models were trained using a minibatch size 
of 64; they were evaluated every 1000 iterations (the training error corresponds to evaluation using 
current mini-batch, the validation error corresponds to evaluation using whole validation set); since 
the dataset size is small, the error curve has fewer points and hence not smooth. A patience of 200 
minibatch iterations is used for early stopping; the training stops if the validation error does not 
improve in next 200 minibatch iterations. The error curves are typically used for analyzing the 
convergence of the model and overfitting to training dataset for proper training. 
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